Constrained Robust Optimal Trajectory Tracking: Model Predictive Control Approaches

نویسندگان

  • Maximilian Balandat
  • Uwe Klingauf
چکیده

This thesis is concerned with the theoretical foundations of Robust Model Predictive Control and its application to tracking control problems. Its first part provides an introduction to MPC for constrained linear systems as well as a survey of different Robust MPC methodologies. The second part consists of a discussion of the recently developed Tube-Based Robust MPC framework and its extension to outputfeedback and tracking control problems. Guidelines on how to synthesize Tube-Based Robust Model Predictive Controllers are given, and a software framework is developed allowing for the controllers to be implemented both explicitly as a lookup table (using multiparametric programming) and implicitly by using fast on-line optimization algorithms. The reviewed Tube-Based Robust MPC controllers are tested on illustrative benchmark problems and issues concerning their computational complexity are discussed. The last part of this thesis presents the novel contribution of “Interpolated Tube MPC”, an approach that combines interpolation techniques with the basic ideas behind Tube-Based Robust MPC. Important properties of this new type of controller are proven in a rigorous theoretical analysis. Finally, the applicability of Interpolated Tube MPC is tested in a case study, which shows the superior computational performance of the controller compared to standard Tube-Based Robust MPC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV

This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...

متن کامل

Trajectory tracking of autonomous vessels using model predictive control ⋆

Autonomous surface vehicles are with increasing popularity being seen in various applications where automatic control plays an important role. In this paper the problem of twodimensional trajectory tracking for autonomous marine surface vehicles is addressed using Model Predictive Control (MPC). At each time step, the reference trajectories of a vessel are assumed to be known over a finite time...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

3-RPS Parallel Manipulator Dynamical Modelling and Control Based on SMC and FL Methods

In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed fortrajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring smallinertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model ofthe manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010